Distributing User Code with
the CernVM FileSystem

Dave Dykstra
CHEP 2019
7 November 2019

Presenter: Ken Herner

e

JE - CernVM
D Fermilab u File system

Distributing user code to grid jobs

* Experiment code is successfully being distributed to grid jobs with the
CernVM FileSystem (CVMFS)

— Relatively large amount of code
— Managed by a few privileged people per experiment

— Some delays in availability are acceptable
e Typically delays around 30 minutes, sometimes much longer due to outages

* End user code (such as for physics analysis) has not been using CVMFS
— Much smaller amount of code for each user
— Authentication for so many users is a challenge

— Significant delays are not acceptable
* Should reliably be less than 10 minutes so job batches aren’t significantly delayed

Fermilab user code distribution story

Many Fermilab-based experiments were distributing code via Network
Attached Storage (NAS) mounted on worker nodes

— Frequent overloads experienced

— Couldn’t expand to grid

NAS directories were unmounted from worker nodes

Users asked to instead download code tarballs from high speed file
server (dCache)

— Many jobs downloading up to 3GB tarballs at the beginning of jobs from
dCache overloaded individual disk servers

— To mitigate, tarballs moved to “resilient” pool with copies on 20 disk
servers each
* Highly wasteful of disk space, and both LAN and WAN bandwidth

Considering CVMFS for user code

e CVMEFS is efficient for code distribution

— Software tends to have many files in common with previous versions
* Files reused thanks to cvmfs deduplication

— Site and worker node caching works great for running many jobs
— Only the subset of files that are actually used are downloaded

* The main challenge for user code on CVMFS is that standard publish +
distribution delays are too long

— A proof-of-concept test using existing tarballs from dCache showed publish
rate could be reasonably handled by one server

— Distribution timing parameters can be reduced

 Reliability is much more important than for standard code
— Use two servers

System design

Two publishing servers for redundancy
Each publishing server provides web api
User code tarballs given unique Code ID (CID) based on hash of content
Automatically clean out old tarballs
Two repositories on each server so cleanups don’t block publishing
— When not cleaning up, publish in parallel

Integrate with local job submission system (jobsub in Fermilab’s case)
— Clients directly upload tarballs to a publishing server
— Authenticated by X.509 proxy

Publishing servers unpack each tarball in a directory name based on its CID
Minimize distribution delays to be less than 5 minutes

Job wrapper script waits (with a timeout) for CID to appear in any of the four
repositories and passes the directory path to the job

Control flow

1) User Creates Awesome
Awesome Tarball Tarball
[
User 4
3) jobsub_submit creates ’

2) User executes
jobsub_submit with flags
specifying the location of
the user tarball

jobsub_submit
[Jobsub UI]

6) Submit Jobsub Jobs with CID
information andvtarball size

unique hash per tarball (CID) 1. Queue requests
2. Use 2 repositories on each server,
2 readers of the queue dequeue the
request, read tarball, and publish.
3. Copies of published repos from both

servers available on both

4) Ask one of two publishing
machines if CID published

If CID has not been published:
5) Upload CID tarball to same
publishing machine —

.

(Jobsub Server

CVMFS User Tarball Repo Server
\

e

\

7) Jobs wait for CID to show
up in one of ;he repositories

FNAL Stratum 1

(0SG Stratum 1) (

(Worker nodes

o
)

7 November 2019

Publishing server API

/pubapl/publlsh?ad XXX
Uses POST to upload tarball; easy to do with curl
— Does queueing and publishing
— Responds OK when queued or PRESENT if cid already existed
* Also updates a timestamp if PRESENT, to defer cleanup
— CIDs assigned by client; api accepts any CID and may include slashes to group into subdirectories
* Fermilab’s client puts them into subdirectories by VO

/pubapi/exists?cid=XXX

— Responds MISSING or PRESENT
/pubapi/update?cid=XXX

— Exactly like exists, except updates the timestamp if PRESENT
/pubapi/config

— Returns configuration, currently a list of configured repositories
/pubapi/ping

— Returns OK, for monitoring and load balancing purposes

Repository cleanup

e CID directories are automatically removed after a configurable
number of days (default 30) since the last time they were used
— CVMFS is only used in this system for grid jobs, not as an archive
— Users must keep track of their own code and can republish if they need
the same code again later

e Timestamps for previously published CIDs are stored in any
repository when a CID is reused

— Because server and repository allocated for new publish might be
different than the original one
* Cleanups happen in one repository per hour starting at a
configurable hour of the night, followed by cvmfs garbage
collection

Publishing server software packaging

Most of the publishing server software is packaged in a single
rom plus its dependencies

— Designed to be able to be deployed by multiple organizations

— Nothing Fermilab-specific

Configuration is in a single simple file

— Mainly just repository names needed

— Some other standard system configuration needed such as grid-mapfile
Creates repositories and replicas

Provides https web api

Does the automatic cleanup

Minimizing distribution delays

* Distribution update time was minimized

— Time-To-Live set to 15 seconds in repository configuration instead of
usual 4 minutes

— Cache delay set to usual 61 seconds in Apache

— Stratum 1 set to check for updates to these repositories twice per
minute instead of usual once every 5 minutes

* Separate cron so doesn’t need to wait for other repositories
— cvmfs client kernel cache flush takes the usual 1 minute

e Total delay for small updates should be less than 3 minutes after
publication

Status

Production publication system is in place, including
expedited updates

Updates to jobsub put into production yesterday
VOs will begin transitioning to it soon
Publishing server code available as open source

— https://github.com/cvmfs-contrib/cvmfs-user-pub

Thank you to other contributors: Shreyas Bhat, Dennis Box,
Hyunwoo Kim, and Tanya Levshina

https://github.com/cvmfs-contrib/cvmfs-user-pub

